Tag Archives: Broccoli

New Study Shows Chemical Found in Green Leafy Vegetables Can Slow the Spread and Treat Illnesses Caused by COVID-19 and Other Common Cold Viruses

Jim Hoft
March 29, 2022

According to a study led by Johns Hopkins Children’s Center, a chemical that can be found in green leafy vegetables such as broccoli could slow the spread and treat illnesses caused by Covid-19 and other common cold viruses.

Researchers at John Hopkins Children’s Center discovered from their lab experiments on mice that “sulforaphane, a plant-derived chemical, known as a phytochemical, already found to have anti-cancer effects, can inhibit the replication of SARS-CoV-2, the coronavirus that causes COVID-19, and another human coronavirus in cells and mice.”

“While the results are promising, the researchers caution the public against rushing to buy sulforaphane supplements available online and in stores, noting that studies of sulforaphane in humans are necessary before the chemical is proven effective, and emphasizing the lack of regulation covering such supplements,” Hopkins Medicine stated.

Sulforaphane can be found in cruciferous vegetables like broccoli sprouts, broccoli, cauliflower, kale, Brussels sprouts, cabbage, both red and white varieties, bok choy, watercress, arugula, also known as rocket.

TRENDING: “You’re Asking Me to Do What?” – Madison Cawthorn Talks about the ‘DC elites’ Having Orgies and Doing Cocaine (VIDEO)

“When the COVID-19 pandemic started, our multidisciplinary research teams switched our investigations of other viruses and bacteria to focus on a potential treatment for what was then a challenging new virus for us,” according to Children’s Center microbiologist and senior author of the paper Lori Jones-Brando, Ph.D.

“I was screening multiple compounds for anti-coronavirus activity and decided to try sulforaphane since it has shown modest activity against other microbial agents that we study,” she added.

According to Alvaro Ordonez, M.D., the first author of the paper and an assistant professor of pediatrics at the Johns Hopkins University School of Medicine, sulforaphane and remdesivir work better combined than alone is very encouraging.

“What we found is that sulforaphane is antiviral against HCoV-OC43 and SARS-CoV-2 coronaviruses while also helping control the immune response,” Ordonez said.

“This multifunctional activity makes it an interesting compound to use against these viral infections, as well as those caused by other human coronaviruses,” he added.

Read the summary of their finding below:

The ongoing SARS-CoV-2 pandemic has created the immediate need for effective therapeutics that can be rapidly translated to clinical use. Despite the introduction of vaccines, effective antiviral agents are still necessary, particularly considering the potential effects of viral variants. New oral antivirals targeting viral enzymes (e.g., molnupiravir and Paxlovid) have recently been approved or are in the process of review for emergency use approval by regulatory agencies, with many more currently under development.

However, this approach can be affected by the emergence of viral variants that change the affinity of the drug to the viral protein. An alternative approach is to target host mechanisms required by the virus to infect cells and replicate. Host-directed therapy is advantageous as it allows preexisting drugs to be repurposed, may provide broad-spectrum inhibition against multiple viruses, and is generally thought to be more refractory to viral escape mutations.

Following exploratory experiments using the in vitro CPE inhibition assay, SFN was identified as a promising candidate to target the host cellular response, given that it is orally bioavailable, commercially available at low cost, and has limited side effects. We observed that SFN has dual antiviral and anti-inflammatory properties against coronaviruses. We determined that SFN has potent antiviral activity against HCoV-OC43 and multiple strains of SARS-CoV-2, including Delta and Omicron, with limited toxicity in cell culture. The similar results observed between the coronaviruses evaluated suggest that SFN could have broad activity against coronaviruses, a feature that may prove invaluable as new strains of pathogenic coronaviruses enter the human population. Moreover, synergistic antiviral activity was observed in vitro between SFN and remdesivir against both types of coronaviruses tested; comparable synergism in vivo would be advantageous in clinical scenarios where remdesivir is currently being used. We demonstrated in vivo efficacy of prophylactic SFN treatment using the K18-hACE2 mouse model of SARS-CoV-2 infection. Prophylactic SFN-treatment in animals reduced viral replication in the lungs by 1.5 orders of magnitude, similar to that reported for remdesivir in the same mouse model. By comparison, BALB/c mice infected with mouse-adapted SARS-CoV-2 had a 1.4 log10 reduction in viral titers when treated with 300 mg/kg of nirmatrelvir 4 h after infection. As expected, SFN treatment also modulated the inflammatory response in SARS-CoV-2-infected mice, leading to decreased lung injury.

In summary, we documented that SFN can inhibit in vitro and in vivo replication of SARS-CoV-2 at pharmacologically and potentially therapeutically achievable concentrations. Further, it can modulate the inflammatory response, thereby decreasing the consequences of infection in mice when administered prior to infection. Given that SFN is orally bioavailable, commercially available, and has limited side effects, our results suggest it could be a promising approach for the prevention and treatment of COVID-19 as well as other coronavirus infections. Further studies are needed to address these possibilities.

Read more here and below.

A Compound in Broccoli May Help Repair Brain Damage

Cassie B.
February 11th, 2022

Scientists long believed that brain regeneration was not possible, but there’s growing evidence that a compound in broccoli and other cruciferous vegetables may be able to carry out this remarkable feat.

In the 1960s, scientists first started to report evidence of brain regeneration in the hippocampus of adult guinea pigs and rats and the cortex of cats. After that, more evidence started to emerge illustrating how the brain is constantly in a state of self-regeneration and self-repair, using neural stem cells to fix aged and damaged tissue.

With this new evidence that it is indeed possible for the brain to regenerate, scientists wanted to find a way to help this process, and one particularly promising neurogenerative agent has emerged in the form of sulforaphane, a biomolecule that is found in cruciferous vegetables like broccoli. Sulforaphane is providing new hope for those who suffer from neurodegenerative disease and brain damage.

A study that was published in the journal Genesis showed that sulforaphane may possess significant therapeutic properties that can fight the underlying pathological disturbances that are seen in people with common neurodegenerative diseases. These include inflammation, neuronal death, increased oxidative stress and perturbed calcium homeostasis. In addition to mitigating these factors, the authors of the study also believe that sulforaphane can stimulate neural stem cell activity.

In the study, the researchers were able to determine the optimal concentration of sulforaphane that can be used to promote neural stem cell growth while keeping neurons intact. They also found that exposing neural stem cells to sulforaphane can lead to their differentiation to neurons, which supports their hypothesis that sulforaphane can indeed stimulate brain repair.

And it’s not just the brain that can benefit from sulforaphane. The compound has also been shown to be useful in treating around 200 other health conditions. For example, it has been linked to improved heart health and digestion. It is also believed to have anti-cancer and anti-diabetic effects and may even protect against sun damage.

How to get more sulforaphane in your diet

Sulforaphane can be found in cruciferous vegetables such as broccoli, cabbage, kale, bok choy and cauliflower. Broccoli sprouts are considered to be one of the best sources of sulforaphane.

Researchers note that raw vegetables tend to have higher levels of this beneficial compound than cooked ones, with one study finding raw broccoli to contain 10 times the sulforaphane of cooked broccoli. If you simply cannot consume it raw, it is best to lightly steam cruciferous vegetables to preserve their beneficial compounds. Boiling or microwaving these vegetables is not recommended if you are trying to get the benefits of sulforaphane.

It is important to keep in mind that cruciferous vegetables must be chopped, chewed or cut in order to get the benefits. That’s because sulforaphane is only activated when it comes into contact with an enzyme involved in the defense response of plants known as glucoraphanin, which is released when the plant is damaged.

You can also enhance your intake of sulforaphane by adding mustard powder or mustard seed to your meals. The dietary myrosinase content of mustard seeds and powder can help raise the availability of sulforaphane in foods like broccoli, particularly when you are cooking these vegetables.

Although the researchers believe that further studies are needed, their finding serves as a powerful reminder of just how beneficial nature’s gifts can be when it comes to our health. Including more foods like broccoli in your diet could well have therapeutic value when it comes to brain degenerative disorders, something that is particularly timely as many people deal with the neurological effects of COVID-19 vaccines.